
Image Captioning Using Deep Learning

Arnav Arnav
Indiana University Bloomington

School of Informatics and Computing
aarnav@iu.edu

Hankyu Jang
Indiana University Bloomington

School of Informatics and Computing
hankjang@iu.edu

Pulkit Maloo
Indiana University Bloomington

School of Informatics and Computing
maloop@iu.edu

Abstract

Scene understanding has always been an essential task
in computer vision, and image description or image cap-
tioning is one of the major areas of AI research since it
aims to mimic the human ability to compress an enor-
mous amount of visual information in a few sentences.
The task aims to provide short but detailed descriptions
of the image in a few sentences and requires the use of
techniques from computer vision and natural language
processing. Recent developments in deep learning and
the availability of image caption datasets such as Flikr
and COCO have enabled significant research in the area.
Our experiment on training the model using Flickr8k
data using Convolutional Neural Network (CNN) as an
encoder and Recurrent Neural Network (RNN) as de-
coder shows that our model is capable of generating
some reasonable captions.

Keywords : Image Captioning, Convolutional Neural
Network, Recurrent Neural Network

Introduction
Humans can describe a scene in an image with no difficulty,
but this task has been difficult for computers (Karpathy and
Fei-Fei 2015). Scene Description can be instrumental, such
as helping visually impaired people better understand im-
ages on the internet (Vinyals et al. 2015).

Scene Understanding has been an active area of research
in computer vision since the task is broad and requires mod-
els that can perform various tasks as one. Mainly, scene un-
derstanding requires detecting and recognizing known ob-
jects, localizing the objects and learning the spatial relation-
ships between the objects. The model should also be robust
to changes in illumination changes, and be able to handle
occlusions (Aarthi and Chitrakala 2017).

The task of image captioning or scene description is more
challenging since generating meaningful descriptions re-
quires identifying essential objects and learning language
dependencies and correctly using the recognized objects in
a sentence based on the language.

Through this project, we aim to understand the ap-
proaches used in image captioning. We choose one approach
and experiment with it and show the results that were ob-
tained.

Background
Convolutional Neural Network
A convolutional neural network is an architecture of a neu-
ral network that has been used for image classification and
object detection with great success. The most common ar-
chitecture consists of three main operations that are repeated
several times. Firstly, a convolution is applied to the image,
and the weights of these convolution kernels or filters are not
predetermined but are learned from the data. Next, the result
of these convolutions is compressed into smaller matrices
with the help of pooling. Pooling is the process of aggregat-
ing results from regions in a manner similar to convolution.
Pooling can be done in various ways such as max-pooling
that retains the maximum element in the pooling region, min
pooling or average pooling.

The size of the convolution filter, the pooling region, the
number of filters to use and the number of convolution and
dense layers are hyperparameters and need to be set by try-
ing what works best for a problem. The number of dropout
layers, that randomly allow a node to propagate its result
further, the probability of dropout and their position is also
important. These are the parameters that need to be set prop-
erly for best results. (contributors 2018a)

There are various architectures of Convolutional Neural
networks that have been used for different tasks, and there is
active research in the area. Three models were used for the
purpose of this project - VGG16, VGG19, and ResNet50.

The VGG architecture was first introduced in (Simonyan
and Zisserman 2014) for image classification on the Ima-
geNet data set. The architecture is known for its simplicity
as it uses only a 3 × 3 convolutional layers stacked on top
of each other. The VGG19 model has more of these layers
stacked compared to the VGG16. The volume is reduced in
each step with the help of max pooling. These convolutional
layers are followed by two fully connected layers that flatten
the output and a softmax layer that predicts the probability
of each of the objects the model was trained for. (Rosebrock
2017).

The Residual Networks (ResNet) introduced first in (He et
al. 2016) consists of stacked Residual blocks. The residual
block comprises a skip connection which makes it easier to
learn the identity function and hence stacking these residual
blocks helps us go more in-depth and avoid the diminishing



gradient problem (Rosebrock 2017).

Recurrent Neural Network
One of the significant limitations of using traditional feed
forward neural networks is that they are trained with a set of
input and output vectors. The order of these vectors does not
affect the predictions made after training, and they produce
fixed size outputs. There is no way of learning sequences
and learning context or dependencies in various vectors in
the sequence when using traditional neural networks. This is
where Recurrent Neural Networks come to help (Karpathy
2015).

The input to the hidden layer in an RNN (with a single
hidden layer) is the input vector, along with the output of
the hidden layer for the previous time step. The RNNs are
trained to learn to predict the next word given the current
example. In other words, the output from the first training
example is the following training example. This is done for
multiple times in each iteration, which represents the length
of the sequence that the RNN can learn and predict later. The
Network is trained using back propagation through time,
which adjusts the weights between the hidden layer for a
given time step and the next time step. Once trained for var-
ious iterations, the RNN can learn to model the sequence
(contributors 2018c).

There are problems with RNNs, when learning long se-
quences, in situations such as the language translation of
large documents, where it may be necessary to remember
only the context over a small time period. For this pur-
pose, Long Short Term Memory (LSTM) networks are used,
where each cell has three gates - input, forget and output
- and can learn when to forget the previous context, along
with other parameters. The LSTM is trained such that each
LSTM cell updates its weights at each time step and the all
the weights are updated after each iteration. This helps the
network learn long sequences and decide which parts of the
sequences are related with some context (Trask 2015) (con-
tributors 2018b). Gated Recurrent Units (GRUs), another
type of Recurrent Neural Network, have also become quite
popular to solve the same problem. In a GRU unit, there is
only an update gate and a reset gate; however, there exist
variations of GRU such as a minimal gated unit in which
there exists only one gate (forget gate). GRUs train faster
compared to LSTMs while giving comparable results.

RNNs, LSTMs, and GRUs have been used to learn long
sequences of text and music and to generate new documents
given some starting words or phrases (Karpathy 2015).

Related Work
One of the influential papers by Andrej Karpathy et al. in im-
age captioning divides the task into two steps: mapping sen-
tence snippets to visual regions in the image and then using
these correspondences to generate new descriptions (Karpa-
thy and Fei-Fei 2015).

The authors use a Region Convolutional Neural Network
(RCNN) to represent images as a set of h dimensional vec-
tors each representing an object in the image, detected based
on 200 ImageNet classes. The authors represent sentences

with the help of a Bidirectional Recurrent Neural Network
(BRNN) in the same h dimensional space. Each sentence is a
set of h dimensional vectors, representing snippets or words.
The use of the BRNN enriches this representation as it learns
knowledge about the context of each word in a sentence. The
authors find that with such a representation, the final repre-
sentation of words aligns strongly with the representation of
visual regions related to the same concept. They define an
alignment score on this representation of words and visual
regions and align various words to the same region generat-
ing text snippets, with the help of a Markov Random Field.
With the help of these correspondences between image re-
gions and text snippets, the authors train another model that
generates text descriptions for new unseen images (Karpathy
and Fei-Fei 2015).

The authors train an RNN that takes text snippets and vi-
sual regions as inputs and tries to predict the next word in the
text based on the words it has seen so far. The image region
information is passed to the network as the initial hidden
state at the initial time step, and the network learns to pre-
dict the log probability of the next most likely word using a
softmax classifier. The authors use unique START and END
tokens that represent the beginning and end of the sentence,
which allows the network to make variable length predic-
tions. The RNN has 512 nodes in the hidden layer (Karpathy
and Fei-Fei 2015).

The network for learning correspondences between visual
regions and text words was trained using stochastic gradient
descent in batches of 100 image-sentence pairs. The authors
used dropouts on every layer except the recurrent layers and
clipped the element-wise gradients at 5 to prevent gradient
explosion. The RNN to generate descriptions for unseen im-
ages was trained using RMSprop which dynamically adjusts
the learning rate (Karpathy and Fei-Fei 2015).

Kelvin Xu et.al (Xu et al. 2015) use the concept of at-
tention to better describe images. The authors propose mod-
els that focus on which area of the image, and what objects
in the image are being given attention and evaluate these
models on different image captioning datasets. The idea be-
hind the approach is that much like the human visual system,
some parts of the image may be ignored for the task of im-
age description, and only the salient foreground features are
considered. The authors use a CNN to learn important fea-
tures of the image and an LSTM (Long short-term memory
network) to generate description text based on a context vec-
tor.

Jyoti Aneja et al. in (Aneja, Deshpande, and Schwing
2017) use a convolutional approach to generate description
text instead of a simple RNN, and show that their model
works at par with RNN and LSTM based approaches.

Andrew Shin et al. (Shin, Ushiku, and Harada 2016) use
a second neural network, finely tuned on text-based senti-
ment analysis to generate image descriptions which capture
the sentiments in the image. The authors use multi-label
learning to learn sentiments associated with each of the im-
ages, then use these sentiments, along with the input from
the CNN itself as inputs to an LSTM to generate sentences
which include the sentiment. The LSTM is restricted so that
each description contains at least one term from the senti-



Figure 1: Flickr8k - Sample image and captions

ment vocabulary.
Alexander Mathews et al. (Mathews, Xie, and He 2016)

emphasize how only a few image descriptions in most
datasets contain words describing sentiments, and most de-
scriptions are factual. The authors propose a model that con-
sists of two CNN + RNN models each with a speci�c task.
While one model learns to describe factual content in the
image, the other learns to describe the sentiment associated,
thus providing a framework that learns to generate sentiment
based descriptions even with lesser image sentiment data.

Quanzeng You et.al in (You, Jin, and Luo 2018) propose
approaches to inject sentiment into the descriptions gener-
ated by image captioning methods.

Tsung Yi Lin et.al in (Lin et al. 2014) describe the Mi-
crosoft Common Objects in Context dataset, that is widely
used for benchmarking image captioning models.

Approach
Dataset
The FLickr8k data set is a collection of 8000 images with
�ve captions each, collected in one place, and available to
be used for the benchmarking of image captioning and im-
age querying approaches (Rashtchian et al. 2010). The au-
thors show that better results can be achieved when multiple
captions are used with each image, to train the model.

Figure 1 is a sample image �le in Flickr8K dataset. The
image is paired with following �ve human-generated train-
ing captions:
� A black dog running in the surf .

� A black lab with tags frolicks in the water .

� A dog splashes in the water

� The black dog runs through the water .

� This is a black dog splashing in the water .

Data Preprocessing
We divide the training data (8000) and the captions into three
different data sets - the training set (6000), the validation set
(1000) and the test set (1000). For each of the captions in the
three data sets, we create a set of training input and target
captions by shifting the training input caption by one word
to get the training target caption.

Image Preprocessing To generate image features we use
pretrained weights of CNNs trained on ImageNet image
classi�cation dataset (VGG16, VGG19, and ResNet50) and
remove the �nal dense layers from the model. We preprocess
images and generate image features using the by performing
a forward pass on the image on using these weights and save
these features to a �le.

Caption Preprocessing To preprocess the image captions
in the training data, we �rst identify all the words that are
there in the data set. We then generate a histogram of the
distribution of these words and drop the words that occur
less than �ve times. We end up with the vocabulary of size
2531 words, including< bos >; < eos > , < unk > and
< pad > tags which specify the beginning of a sentence, end
of a sentence, unknown word and padding respectively. We
generate one hot encoding captions for each of these words
and use the index of the class (index of 1) for training the
network.

Our model takes an image and then generates a caption as
shown in �gures 2 and 3.

Model

The model that was used for the project consists of two dif-
ferent input streams, one for the image features, and the
other for the preprocessed input captions. The image fea-
tures are passed through a fully connected (dense) layer to
get a representation in a different dimension. The input cap-
tions are passed through an embedding layer. These two
input streams are then merges and passed as inputs to an
LSTM layer. The image is passed as the initial state to the
LSTM while the caption embeddings are passed as the input
to the LSTM. The architecture is shown in �gure 2

Training

The model was trained �rst on Indiana University's Big Red
II. We faced memory problems using different batch sizes
and hence moved to an Amazon Web Services (AWS) in-
stance. Thep2.xlargeinstance was used, which includes one
NVIDIA Tesla K80 GPU, with 4 Virtual CPUs and 61 GB
of RAM. Training the model takes about one hour on the
AWS instance with a batch size of 32 (Amazon Web Ser-
vices 2018).

To train the model, for each image and each of the in-
put captions that were generated during preprocessing, we
pass the image features through the dense layer, and the pre-
processed input captions to the embedding layer. We then
use the image as the initial state to the LSTM, along with
the caption which is passed as the input to the LSTM. The
model outputs a predicted caption and the error with respect
to the actual caption is back propagated using RMSprop op-
timization, as shown in �gure 3.

Word Embedding Word Embeddings provide a vector
representation of words that can capture something about
the context of the word. There are many pretrained word
embedding available; however, our model learns the word
embedding as part of the model itself.



Figure 2: Our Model Architecture

Figure 3: Training the model using VGG16 image features

Loss Function We used categorical cross-entropy loss
function in the model. Cross-entropy in information theory
de�nes the minimum number of bits required to identify an
event drawn from a set two event distributions when the cod-
ing scheme used is generated from an estimated probability
distribution instead of the true distribution (Wikipedia con-
tributors 2018b). We want to minimize the loss to minimize
the difference between the distribution of the predicted sen-
tences and the actual captions of the image given in the train-
ing data.

Evaluation Metric The Bilingual Evaluation Understudy
score (BLEU score) was used as the metric to evaluate the
generated captions generated by the model. The BLEU score
is a metric for evaluation of machine-generated translations,
but can also be used to evaluate machine generated sentences
in various natural language processing tasks. It is a com-
mon metric for evaluating image captions (Jason Brownlee
2017).

The BLEU score is designed to give a score between 0 to
1 (often scaled to a range of 0-100) on a corpus level and
often does not produce good results on individual sentences.
The BLUE score can be calculated for various n-grams and
represents for each sentence the relative number of matching
n-grams in the reference sentences. The scores of all the sen-
tences are combined using a geometric mean with a penalty
applied to short sentences to prevent very short sentences
that are not suitable translations, from having high scores
(Wikipedia contributors 2018a).

For the purpose of this project we calculate BLEU scores
for unigrams u to 4-grams (BLEU1 to BLEU4 respectively)
to compare results of different models that were used. We
use the images in the test set, and generate captions using
our model. We use a list of 5 target captions as the reference

Metric VGG16 VGG19 ResNet50
BLEU1 51.26 52.64 51.60
BLEU2 21.41 21.95 22.71
BLEU3 8.32 8.24 8.99
BLEU4 3.31 3.26 3.94

Table 1: Greedy (embedding size: 300, LSTM size: 300,
learning rate: 0.0001, dropout: 0.2, batch size: 32, epochs:
10)

Metric VGG16 VGG19 ResNet50
BLEU1 54.52 55.02 56.78
BLEU2 24.04 24.21 25.87
BLEU3 10.05 10.08 10.93
BLEU4 3.97 3.91 4.46

Table 2: Beam Search (embedding size: 300, LSTM size:
300, learning rate: 0.000051, dropout: 0.2, batch size: 32,
epochs: 33)

sentences and compute the blue score for all the images in
the data.

Optimization The RMSprop optimization was used to
minimize the loss and train the model. The problem with
training deep networks for complicated tasks is that the
gradient of these arbitrarily complicated functions can ei-
ther explode or vanish as the errors are back propa-
gated. RMSprop optimization uses a moving average of the
squared gradients to normalize the gradient. This in effect
adaptively changes the step size depending on the gradi-
ent value medium-RMSprop. RMSprop was developed for
batch training of neural networks and it has been observed
that RMSprop works well for LSTM networks.

Inference
To perform inference, we �rst obtain image embedding by
passing the image through the CNN model and then the
dense layer. Then to generate captions using the model, we
�rst feed the LSTM cell with< bos > as the �rst input
and image embedding as its initial states. The LSTM pro-
duces a word and its hidden states, and we keep feeding this
word and hidden states again to the LSTM cell until it out-
puts< eos > or reaches the max sentence length as shown
in �gure 4. If the LSTM produces< unk > or < pad >

Metric VGG16 VGG19 ResNet50
BLEU1 55.20 55.60 57.49
BLEU2 24.77 24.73 26.60
BLEU3 10.75 10.56 11.82
BLEU4 4.33 4.50 5.01

Table 3: Beam Search (embedding size: 512, LSTM size:
512, learning rate: 0.000051, dropout: 0.2, batch size: 32,
epochs: 33)



token, we discard that sentence.
We want to maximize the joint probability of the sentence

produced given an image. We took the log of the probabili-
ties to avoid under�ow problem.

log p(SjI ) =
NP

t =1
log p(St jI; S0; :::; St � 1)

Figure 4: Inference: Generating captions once the LSTM is
trained

Beam Search Instead of sampling in a greedy approach
described above, the better way is to do Beam Search where
we keepk best sentences produced so far up to timet to gen-
erate sentences of sizet + 1 . In this way, we getk best sen-
tences at the end. Beam Search signi�cantly improved our
BLEU scores as shown in table 2. We used various beam
sizes for our experiments. Using Beam Search favors sen-
tences with shorter lengths, and so we implemented length
normalization to get the sentences with maximum average
log probability. We also raised the length normalizing term
to power alpha (0.7) which is a generally used hack that pro-
duced better sentences.

Experiments
We trained the model 3 times for each of the CNNs models
that we used. First, we trained the model using the learning
rate as 0.0001 for 10 epochs and used greedy approach to
generate captions. The BLEU scores for this set of hyperpa-
rameters are shown in table 1.

Next we decreased the learning rate to 0.000051, and
trained the model to 33 epochs and used beam search to
generate sentences. The BLEU scores for this set or hyper-
parameters are given in table 2. We can see that there is a
signi�cant improvement in the BLEU scores

Finally we increased the size of the embedding layer and
the dense layer from 300 to 512, increased the LSTM size
from 300 to 512 and trained the model again for 33 epochs.
The BLEU scores for these hyperparameters are given in ta-
ble 3. We can see that increasing the LSTM size and the
size of the embedding layer lead to even better results, even
though it took signi�cantly longer time to train the models
with these hyperparameters.

We cleaned up our code and created two �les that use
argument parser to specify parameters for training and the
model, and generating captions using trained weights. We
also created a simple web application in python with the help
of �ask that allows users to upload an image and uses the the
trained weights to generate image captions. The application
is included in the repository along with the code.

The link to the github repository with all the code can be
reached by clicking HERE

Results
The table 3 shows the best results and we see that the BLEU
score is highest with the model that uses ResNet to generate
image features. The results shown here are for the ResNet50
model using a LSTM size of 512 and a embedding layer and
a dense layer size of 512.

The images in the results show 5 sentences, generated us-
ing a beam size of 5 along with the of the average log prob-
ability of the sequence of words. The �rst sentence corre-
sponds to the best caption according to the beam search and
the last sentence corresponds to the worst.

Caption that make sense We see from the images in �g-
ure 5 and �gure 6 that the image captions make sense and
describe the scene pretty well. More such images are shown
in the appendix.

Figure 5: Surfer: Results using ResNet50, LSTM size 512

Figure 6: Football: Results using ResNet50, LSTM size 512




	Introduction
	Background
	Convolutional Neural Network
	Recurrent Neural Network

	Related Work
	Approach
	Dataset
	Data Preprocessing
	Model
	Training
	Inference

	Experiments
	Results
	Conclusion
	Future Work
	Acknowledgements
	Appendix : Caption that make sense
	Appendix : Caption with more errors

